ANOMALOUS ACTIVATION ENERGY OF THERMAL 1,5-HYDROGEN SHIFT IN 1,2-BENZOTROPILIDENE

Kazunobu HASHIMOTO and Akira AMANO

Department of Applied Chemistry, Faculty of Engineering

Tohoku University, Aoba-Aramaki, Sendai 980

Activation energy of approximately 10 kcal/mol higher than that usually encountered in 1,5-hydrogen shifts in acyclic and cyclic 1,3-dienes was observed in the gas phase thermal reaction of 1,2-benzotropilidene. The value is attributable to the intermediary formation of 4,5-benzotropilidene in which aromatic resonance is not fully developed.

The orbital symmetry allowed thermal 1,5-hydrogen shifts have been known to occur in both acyclic and cyclic 1,3-dienes through suprafacial six-membered transition state. 1) The energy of activation pertinent to this class of reactions is usually in the range between 30 and 35 kcal/mol depending on the energetics required to form the transition state. In the present paper, we report the case of 1,2-benzotropilidene, kinetic analysis of which reveals an exceptionally high energy of activation.

3,4-Benzotropilidene was prepared from o-phthaldialdehyde and trimethylene-bis-(triphenyl-phosphonium)-dibromide. 3,5,7,7-Tetradeuterio-1,2-benzotropilidene (I) was then prepared by equilibrating 3,4-benzotropilidene with potassium tert-butoxide and hexadeuterated dimethyl sulfoxide. Approximately 92% deuteration was thus attained. The reaction of I was carried out in gas phase in a 100-ml quartz sealed vessel at temperatures ranging from 309 to 360°C. The reaction temperature was maintained within 0.5°C of the recorded value. Products were collected by liquid nitrogen and were subjected to NMR(60-MHz) analysis as carbon tetrachloride solution.

In addition to a signal at 2.9 % for four aromatic hydrogens, NMR showed signals at 3.05 %, 3.55 %, 3.9 %, 4.3 % and 7.05 % for hydrogens at positions 3, 4, 5, 6 and 7, respectively. Peak intensities of the latter signals were used to evaluate relative concentrations of seven tetradeuterio-1,2-benzotropilidene isomers. The 1,5-hydrogen shift of I to produce six other isomers can be schematically illustrated as follows:

Seven tetradeuterio-4,5-benzotropilidenes indicated in parentheses in the above scheme were not detected. Simultaneous rate equations with respect to more stable seven tetradeuterio-1,2-benzotropilidenes, from I through VII, can be solved to give the following for the instantaneous mole fractions, if it is assumed that $\underline{k} \ll \underline{k}'$,

(I) =
$$1/10 + 2 \exp(-5\underline{k}t/3)/5 + \exp(-8\underline{k}t/3)/2$$

(II) = (III) = $2(VI) = 2(VII) = 1/5 + 2 \exp(-5\underline{k}t/3)/15 - \exp(-8\underline{k}t/3)/3$
 $2(IV) = (V) = 1/5 - 8 \exp(-5\underline{k}t/3)/15 + \exp(-8\underline{k}t/3)/3$

where \underline{k} and \underline{k}' are the apparent specific rates of the 1,5-hydrogen shift with and without the intermediary formation of 4,5-benzotropilidene, respectively; and t the reaction time. According

to the above solution, (I) = 1.0 and the concentration of all the other isomers becomes zero at t = 0. At $t = \infty$, on the other hand, equilibrium scramble of deuterium atoms as indicated by the following equation should be established.

This is in agreement with the present study and also with existing literature.³⁾ Reaction parameter, Y, defined by the following equation, is calculated from the observed deuterium distribution at time t, which is in turn used to evaluate intrinsic rate constant, $\underline{\mathbf{k}}_{\text{int}}$, pertinent to the rate controlling steps of the formulated reaction scheme.

Y = (number of D-atom at C-7)/(number of D-atom at C-4 and C-6)

=
$$\{2(I) + (II) + (III) + (V) + 2(VI) + 2(VII)\}/\{(II) + (III) + 2(IV) + 2(V) + (VI) + (VII)\}$$

= $\{3 + 2 \exp(-5\underline{k}t/3)\}/3\{1 - \exp(-5\underline{k}t/3)\}$
 $\underline{k}_{int} = -6/5t \cdot ln\{3(Y - 1)/(3Y + 2)\}$

Since any of the intermediary 4,5-benzotropilidene undergoes either 1,5-deuterium shift or 1,5-hydrogen shift with equal probability, intrinsic rate constant, $\underline{\mathbf{k}}_{\text{int}}$, is set twice the apparent rate constant, $\underline{\mathbf{k}}$.

The results are summarized in Table 1. The least-squares fit of the listed \underline{k}_{int} 's into the

Table 1. Rate of thermal 1,5-hydrogen shift in 1,2-benzotropilidene

Temperature	Reaction time	Deute	erium distribu	tion	Y	$\frac{\mathtt{k}}{\mathtt{int}}$
o _C	min	C-3	C-4 and C-6	C-7		$\sec^{-1} x 10^{5}$
309	150	0.84	0.11	1.69	7 -7 7	2.93 ± 0.40
312	90	0.87	0.09	1.74	9.89	3.78 ± 0.43
316	150	0.78	0.20	1.57	3•93	6.00 ± 0.84
316	200	0.77	0.22	1.54	3.46	5.28 ± 0.85
316	250	0.74	0.27	1.48	2.76	5.20 ± 0.74
332	90	0.62	0.31	1.24	1.98	19.8 ± 3.2
340	100	0.63	0.30	1.25	2.08	18.6 ± 3.0
347	61	0.70	0.34	1.41	2.09	30.5 ± 5.0
353	78	0.63	0.44	1.27	1.43	40.5 ± 8.7
360	50	0.63	0.45	1.26	1.39	66.4 ± 14.9

Table 2.	Kinetic	parameters	for	some	1,5-hydrogen	shifts	in	cycloheptatriene	system
----------	---------	------------	-----	------	--------------	--------	----	------------------	--------

Reaction	Phase	Log A	E _a kcal/mol	Reference
7-D-1,3,5-cycloheptatriene -> 3-D-1,3,5-cycloheptatriene	Liquid	11.2	32.8	5)
7-Methyl-1,3,5-cycloheptatriene -> 3-Methyl-1,3,5-cycloheptatriene	Gas	12.6	33•3	6)
7-Phenyl-1,3,5-cycloheptatriene -> 3-Phenyl-1,3,5-cycloheptatriene	Liquid	10.8	27.6	7)
7-Methoxy-1,3,5-cycloheptatriene -> 3-Methoxy-1,3,5-cycloheptatriene	Liquid	10.0	26.4	8)

Arrhenius equation yields the following kinetic parameters: $E_a = 43.32 \pm 1.24 \text{ kcal/mol}$, Log A = $11.79 \pm 0.38 \text{ sec}^{-1}$, and $\Delta S^{\dagger} = -7.97 \pm 1.74 \text{ cal/}^{O}K\text{-mol}$. An inspection of the values of reported E_a listed in Table 2 makes it quite clear that 1,2-benzotropilidene assumes an outstanding position among other 1,5-hydrogen shifts in cycloheptatriene system. The value obtained in the present study is approximately 10 kcal/mol higher than that reported on 7-D-1,3,5-cycloheptatriene. The discrepancy can be tentatively accounted for by the intermediary formation of less stabilized 4,5-benzotropilidene taking part in the present case. Difference in the total π -electron energy between 1,2- and 4,5-benzotropilidenes is estimated by the simple Hückel method as being - 0.404 $\beta \approx 8 \text{ kcal/mol}$, the value which is not inconsistent with the present view.

References

- 1) D. S. Glass, R. S. Boikess, and S. Winstein, Tetrahedron Letters, 10, 999 (1966)
- 2) G. Wittig, H. Eggers, and P. Duffner, Ann., 619, 10 (1958)
- 3) M. Pomerantz and G. W. Gruber, J. Amer. Chem. Soc., 89, 6799 (1967).
- 4) M. Pomerantz and G. W. Gruber, J. Org. Chem., <u>12</u>, 4501 (1968)
- 5) A. P. ter Borg, H. Kloosterziel, and N. Van Meurs, Rec. Trav. Chim., 82, 717 (1963).
- 6) K. W. Egger, J. Amer. Chem. Soc., <u>89</u>, 3688 (1967)
- 7) A. P. ter Borg and H. Kloosterziel, Rec. Trav. Chim., 82, 741 (1963)
- 8) T. Nozoe and K. Takahashi, Bull. Chem. Soc. Japan, 38, 665 (1965).